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ABSTRACT
Multiclass classification and probability estimation have important applications in data analytics. Support
vector machines (SVMs) have shown great success in various real-world problems due to their high classifi-
cation accuracy. However, onemain limitation of standard SVMs is that they do not provide class probability
estimates, and thus fail to offer uncertainty measure about class prediction. In this article, we propose a
simple yet effective framework to endow kernel SVMs with the feature of multiclass probability estimation.
The new probability estimator does not rely on any parametric assumption on the data distribution,
therefore, it is flexible and robust. Theoretically, we show that the proposed estimator is asymptotically
consistent. Computationally, the new procedure can be conveniently implemented using standard SVM
softwares. Our extensive numerical studies demonstrate competitive performance of the new estimator
when compared with existing methods such as multiple logistic regression, linear discrimination analysis,
tree-based methods, and random forest, under various classification settings. Supplementary materials for
this article are available online.
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1. Introduction

Multiclass classification problems are commonly encountered
in biomedical studies. For example, in cancer diagnosis, it is
usually critical to categorize tumors into subclasses based on
their phenotypic features and genomic information, to tailor
the treatment and drug dose for optimal outcomes. One moti-
vating example of this work is to classify small round blue cell
tumors (SRBCTs) of childhood (Khan et al. 2001) into four sub-
types: Burkitt lymphoma (BL), Ewing sarcoma (EWS), neurob-
lastoma (NB), and rhabdomyosarcoma (RMS), based on their
gene expression profiles. The SRBCTs dataset consists of 2308
gene expression measurements, which are obtained from glass-
slide cDNA microarrays following standard National Human
Genome Research Institute protocols. An accurate cancer sub-
type classification can provide better cancer diagnosis and prog-
nosis, leading to novel therapeutic approaches ultimately.

In a multiclass classification problem, the observations
{(xi, yi), i = 1, 2, . . . , n} are randomly drawn from a distribution
P(X,Y), where xi ∈ S ⊂ IRd is the input vector and yi ∈
{1, 2, . . . , k} is the class label. Here n is the sample size, d is the
input dimensionality, and k ≥ 3 is the number of classes. The
main task is to learn a decision function f : S → {1, . . . , k}
which assigns a class label to a data point based on its input.
See Agresti and Coull (1998) and references therein for a
comprehensive overview of classical methods for multiclass
classification. There are two types of classifiers: hard classifiers
and soft classifiers. Hard classifiers learn the classification
boundary directly, and popular examples include support vector
machines (SVMs, Cortes and Vapnik 1995; Vapnik 1998),
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multicategory psi-learning (Liu and Shen 2006; Qiao and Liu
2009), multiclass boosting algorithms (Zou, Zhu, and Hastie
2008; Wang 2013), multiclass adaboost (Zhu et al. 2009). Soft
classifiers first estimate the class probabilities pj(x) = P(Y =
j|X = x), j = 1, 2, . . . , k, and then construct the decision rule
using the argmax rule f (x) = argmaxj=1,...,k pj(x). Commonly
used soft classifiers include multiple logistic regression, linear
discriminant analysis (LDA), and quadratic discriminant
analysis (QDA).

Multiclass SVMs have been widely studied in literature,
including Weston and Watkins (1999), Lee, Lin, and Wahba
(2004),Wang and Shen (2007), Liu (2007), Liu and Yuan (2011),
Zhang and Liu (2013), Huang et al. (2013), etc., and themethods
are shown to achieve high prediction accuracy in various appli-
cations such as cancer diagnosis, handwritten digits recognition,
junk email detection (Burges 1998; Cristianini and Shawe-
Taylor 2000; Zhu et al. 2004). Lin (2002) shows that binary SVMs
target directly on the Bayes classification boundary without
estimating class probabilities. Zhang (2004) proves some general
results on the consistency of multiclass classification methods.
However, one major limitation of standard SVMs is that
they do not provide class probability estimates. Take cancer
diagnosis as an example. In addition to labeling a patient as
“subtype A” or “subtype B,” it is often desired to report some
uncertainty measure about the classification decision as well.
Many methods have been proposed for multiclass probability
estimation from various perspectives, including multiple
logistic regression, classification tree methods (Breiman et al.
1984), kernel regression (Zhu and Hastie 2005; Tu and Wang
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2013). Researchers have been intrigued by how to endow
SVMs with the feature of estimating class probabilities. For
binary problems, Wang, Shen, and Liu (2008) suggested the
idea of first training a series of weighted SVMs (WSVMs)
and then aggregating multiple binary decisions to construct
class probabilities. Multiclass problems are however muchmore
difficult than binary ones due to their intrinsic complexity.

Recently, Wu, Zhang, and Liu (2010) generalized Wang,
Shen, and Liu (2008) from k = 2 to k ≥ 3 and showed
its promising performance when the number of classes k
is moderate. In practice, one concern about Wu, Zhang,
and Liu (2010) is its high computational cost for a large
k. The total number of WSVM classifiers required to fit by
the method increases exponentially with k, so the method
is slow when k ≥ 4. In addition, whenever a new class is
added to the data, the method needs to refit the previous
solutions since the decision is based on considering all the
classes simultaneously. In this article, we propose a simple
yet effective approach to estimating multiclass probabilities
from SVMs. The key idea is as follows: decompose multiclass
problems into multiple binary problems, estimate class prob-
abilities for each pair of classes by using binary WSVMs, and
construct multiclass probabilities by assembling pairwise
probability estimates. Compared toWu, Zhang, and Liu (2010),
the new method is much faster and its computational cost is
quadratic in k. The newmethod can handlemulticlass problems
with a larger k, say, k = 10.One can implement the procedure by
standard binary SVM software or R packages without extra pro-
gramming effort. Furthermore, due to its divide-and-conquer
nature, the new method enjoys parallel computing. Theoreti-
cally, the new estimator is asymptotically consistent. Our exten-
sive numerical studies demonstrate its competitive performance
compared to existing methods such as multiple logistic regres-
sion and tree-based methods. The idea of multiclass probability
estimation by pairwise coupling has been actively studied in
literature by Hastie and Tibshirani (1998), Wu, Lin, and Weng
(2004), Van Calster et al. (2007), and various schemes have been
suggested. One major advantage of the new estimator is that it
is model-free and fully nonparametric, while other methods
either assume the availability of pairwise class probabilities or
estimate them using the estimates of some prespecified forms.

The rest of the article is organized as follows. Section 2
presents themainmethodology and theoretical properties of the
proposedmulticlass probability estimator. Section 3 provides an
efficient computational algorithm for implementation. Section 4
conducts simulated studies, and Section 5 presents real data
examples, followed by concluding remarks in Section 6.

2. Main Methodology

2.1. Weighted SVMs for Binary Classification

In binary classification problems, the class label y is typically
coded as {+1,−1} for convenience. Denote the posterior proba-
bility for +1 class by p1(x) = P(Y = +1|X = x). Large-margin
classifiers, including SVMs, train the classifiers by solving a
regularization problem of the form

min
f∈F

n−1
n∑

i=1
L(yif (xi)) + λJ(f ), (1)

where L(·) is the loss function,F is some functional space con-
taining f , J(f ) is a penalty operator to control model complexity,
and λ > 0 is the regularization parameter which balances the
data fit and the model complexity. The product term yif (xi) is
known as the functional margin. Standard binary SVMs use the
hinge loss L(z) = (1−z)+ = max{0, 1−z}. If the function f has
a linear form f (x) = β0 + xTβ1, we call it a linear classifier. To
achieve nonlinear classification, we use a bivariateMercer kernel
K(·, ·) in the learning process and train a flexible classifier f of
the form β0 + ∑n

i=1 θiK(xi, x), due to the representer theorem
(Kimeldorf and Wahba 1971). For kernel SVMs, the functional
spaceF is the reproducing kernel Hilbert space (RKHS, Wahba
1990) induced byK(·, ·), denoted asHK, and the penalty J(f ) =
‖f ‖2HK

= ∑n
i=1

∑n
l=1 θiθlK(xi, xl). The regularization problem

has the form

min
β0,θ1,...,θn

n−1
n∑

i=1
L(yif (xi)) + λ

n∑
i=1

n∑
l=1

θiθlK(xi, xl),

where f (x) = β0 +
n∑

i=1
θiK(xi, x). (2)

Lin (2002) proved that the theoretical minimizer of the expecta-
tion of hinge loss E[1− Yf (X)]+ has the same sign as the Bayes
rule sign[p1(x)− 1

2 ]. In other words, binary SVMs target directly
on the Bayes rule without estimating p1(x).

Wang, Shen, and Liu (2008) proposed a novel approach to
estimating p1(x) using the weighted SVM for binary classifica-
tion problems. The basic idea is as follows: assign data points
from class −1 (and from class +1) with a weight π (and 1−π),
and minimize the weighted hinge loss

min
f∈HK

n−1

⎡⎣(1 − π)
∑
yi=1

L(yif (xi)) + π
∑
yi=−1

L(yif (xi))

⎤⎦
+λJ(f ), (3)

where 0 ≤ π ≤ 1. One can show that, the theoretical minimizer
of the expectation of the weighted hinge loss E{(1 − π)I(Y =
+1)[1 − Yf (X)]+ + πI(Y = −1)[1 + f (X)]+} has the same
sign as sign[p1(X) − π] for any fixed π . Consequently, using a
series of π values 0 < π1 < · · · < πM < 1, one can solve (3)
repeatedly and obtain multiple classifiers f̂π1 , . . . , f̂πM . For any
x, there exists a uniquem∗ such that f̂πm∗ (x) and f̂πm∗+1(x) have
opposite signs, implying thatπm∗ andπm∗+1 satisfy sign[p1(x)−
πm∗]	=sign[p1(x) − πm∗+1]. This leads to a consistent proba-
bility estimator p̂1(x) = 1

2 (πm∗ + πm∗+1). Wang, Shen, and
Liu (2008) showed that this estimator has competitive numerical
performance, compared to other approaches like Platt’s method
(Platt 1999).

2.2. NewMethod forMulticlass Probability Estimation

We consider multiclass classification problems with k ≥ 3,
with y being coded as {1, 2, . . . , k}. Wu, Zhang, and Liu (2010)
extend the scheme of Wang, Shen, and Liu (2008) from binary
to multiclass problems by solving a series of multiclass WSVM
problems, each problem associated with a weight vector π =
(π1, . . . ,πk) ∈ Ak, where Ak = {(π1, . . . ,πk) : 0 ≤ πj ≤
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1,
∑k

j=1 πj = 1}. To construct class probabilities, Wu, Zhang,
and Liu (2010) need to trainmultiplemulticlassWSVMs, whose
weight vectors cover the entire hyperplane Ak. Consequently,
the computational cost of the procedure is high if k is large, as the
number of grid points covering Ak increases exponentially with
k. This motivates us to develop a simpler and faster alternative
to estimate multiclass probabilities based on SVMs. One main
advantage of the new method is its computational feasibility for
large k.

Define the posterior class probabilities pj(x) = P(Y = j|X =
x), j = 1, . . . , k. For each pair of classes j and j′ with j 	= j′, define
the pairwise conditional probability as

qj|(j,j′)(x) = P(Y = j|X = x)
P(Y = j|X = x) + P(Y = j′|X = x)

. (4)

The quantity qj|(j,j′)(x) can be interpreted as the conditional
probability of a data point with X = x belonging to class j
given that it belongs to either class j or class j′. By definition,
qj|(j,j′)(x)+qj′|(j,j′)(x) = 1 for any j 	= j′ and any x ∈ S . It is easy
to see that

qj|(j,j′)(x)
qj′|(j,j′)(x)

= P(Y = j|X = x)
P(Y = j′|X = x)

= pj(x)
pj′(x)

, j′ 	= j.

In the following, Lemma1 shows that the class probability pj(x)’s
can be constructed from the pairwise conditional probabilities.

Lemma 1. For any j ∈ {1, . . . , k}, we have
pj(x) = qj|(j,j′)(x)/qj′|(j,j′)(x)∑k

l=1 ql|(l,j′)(x)/qj′|(l,j′)(x)
, for j′ 	= j. (5)

The above holds for any arbitrary choice of j′.

Proof. For any fixed j and j′ 	= j, we have

qj|(j,j′)(x)/qj′|(j,j′)(x)∑k
l=1 ql|(l,j′)(x)/qj′|(l,j′)(x)

= pj(x)/p′
j(x)∑k

l=1 pl(x)/pj′(x)

= pj(x)∑k
l=1 pl(x)

= pj(x).

The idea of the new estimator is described as follows. We
first decompose amulticlass classification problem intomultiple
binary problems. Then, for each pair (j, j′) with 1 ≤ j < j′ ≤ k,
we fit the binaryWSVMs and construct the pairwise conditional
probability estimates q̂j|(j,j′). Finally, we compute p̂j(x)’s using
(5). The following is the computational algorithm:

Step 1: For each pair (j, j′) with 1 ≤ j < j′ ≤ k, define the
univariate function Rj,j′(y) = 1 if y = j; = −1 if y = j′.
We fit a series of kernel WSVMs by solving

min
f∈HK

n−1

⎡⎣(1 − πm)
∑
yi=j

L(Rj,j′(yi)f (xi))

+πm
∑
yi=j′

L(Rj,j′(yi)f (xi))

⎤⎦ + λJ(f ) (6)

over a grid of points 0 < π1 < · · · < πM < 1. For each
m = 1, . . . ,M, denote the solution to (6) as f̂j,j′,πm(x).

Step 2: For each pair (j, j′), construct the pairwise conditional
probability estimate as

q̂j|(j,j′)(x) =
[
argmin

πm
{f̂j,j′,πm(x) < 0}

+ argmax
πm

{f̂j,j′,πm(x) > 0}
]

/2, ∀x ∈ S .

Step 3: Compute the posterior class probabilities estimates as

p̂j(x) = q̂j|(j,j′)(x)/q̂j′|(j,j′)(x)∑k
l=1 q̂l|(l,j′)(x)/q̂j′|(l,j′)(x)

, j = 1, . . . , k.

(7)

In Equation (7), we have slightly abused the notation by defin-
ing q̂j|(j,j)(x) = 1 for any x. For now, we assume that the
regularization parameter λ is fixed at Step 1. In Section 3, we
will discuss the issue of parameter tuning. Since the WSVM is
model-free, the new estimator does not rely on any parametric
model assumption on the data and is hence robust.

Next, we establish the consistency of the proposed probabil-
ity estimator (7), which provides theoretical justifications for
the new estimator. We first start with Lemma 2, which states
theoretical optimality of theminimizer of the expectedweighted
hinge loss for the pairwise binary classification problems. Proof
of Lemma 2 follows similar arguments as the proof of Lemma 1
inWang, Shen, and Liu (2008). In the following, we only outline
key steps in the proof and refer to Wang, Shen, and Liu (2008)
for more details.

Lemma 2. Assume 0 < π < 1. For any class j ∈ {1, . . . , k},
choose j′ 	= j. Define

A(f ) = E
[
(1 − π)I(Y = j)L(Rj,j′(Y)f (X))

+ πI(Y = j′)L(Rj,j′(Y)f (X))
]
.

The minimizer of A(f ) is given by f ∗(X) = qj|(j,j′)(X) − π .

Proof. We fix π ∈ (0, 1) and j 	= j′ ∈ {1, . . . , k}, since the
following argument holds for arbitrary choices of their values.
For notation convenience, denote the class label for the (j, j′)-
classification problem by Ỹ = Rj,j′(Y); in other words, Ỹ = +1
if Y = j and Ỹ = −1 if Y = j. Given X, the label Ỹ follows
a binary distribution P(Ỹ = +1|X) = qj|(j,j′)(X) and P(Ỹ =
−1|X) = qj′|(j,j′)(X) = 1 − qj|(j,j′)(X). Furthermore, define the
weight function W(Ỹ) = 1 − π if Ỹ = +1 and W(Ỹ) = π

if Ỹ = −1. Then we have A(f ) = E
[
W(Ỹ)(1 − Ỹf )+

]
. For

any f , define its truncation to the interval [−1,+1] as: f±1 = f
when |f | ≤ 1 and sign(f) otherwise. Since A(f ) ≥ A(f±1), the
minimizer ofA(f )must take values in [−1,+1]. For any f taking
value in [−1,+1], we have (1 − Ỹf )+ = 1 − Ỹf , and therefore
minf A(f ) = EW(Ỹ) − maxf E

{
E

[
W(Ỹ)Ỹ|X]

f (X)
}
. It is easy

to see that E
[
W(Ỹ)Ỹ|X] = P(Ỹ = +1|X)(1−π)−(1−P(Ỹ =

+1|X))π = P(Ỹ = +1|X)−π = qj|(j,j′)(X)−π . Therefore, the
minimizer of A(f ) is given by sign

(
qj|(j,j′)(X) − π

)
.

Lemma 2 essentially states that, for each pair of classes j 	= j′
and for any π ∈ (0, 1), the minimizer of the weighted SVM
directly estimates qj|(j,j′)(x)−π . FollowingWang, Shen, and Liu
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(2008), we can show that q̂j|(j,j′)(x) converges to qj|(j,j′)(x) as the
sample n goes to infinity, as long as the functional space is rich
enough. In the following Theorem 1, we show that our probabil-
ity estimator is consistent for pj(x)’s under general conditions.
The results are obtained by using the conclusion of Lemma 2
and the relationship between qj|(j,j′)(x) and pj(x)’s. The proof is
similar to that of Theorem 2 inWang, Shen, and Liu (2008) and
hence omitted. For convenience, we define π0 = 0 and πM+1 =
1. For a grid 0 = π0 < π1 < · · · < πM < πM+1 = 1, we define
the grid size dπ = max{πm − πm−1,m = 1, . . . ,M + 1}.
Theorem 1. Define the estimated class probabilities p̂j(x), j =
1, . . . , k from the solutions to (6) and (7). Then if λ → 0 and
the grid size dπ → 0 as n → ∞, the proposed probability
estimators are asymptotically consistent, that is, p̂j(x) → pj(x)
for j = 1, 2, . . . , k as n → ∞.

Remark. Though we focus on the SVM only, the proposed esti-
mation scheme and theoretical results can be extended to other
large-margin classifiers as long as the loss is Fisher consistent.

3. Computation and Implementation

3.1. Kernel Learning Optimization

To train theweighted SVMs,weuse a sequence ofweights�M =
{mM ,m = 0, . . . ,M} where M > 0 is an integer. For each pair
of classes (j, j′), we solve the optimization problem (6) and get
the solution f (x) = β0 + ∑n

i=1 θiK(xi, x), which has a finite
representation due to Kimeldorf and Wahba (1971) and Wahba
(1990). Correspondingly, the roughness penalty becomes J(f ) =∑n

i=1
∑n

l=1 θiθlK(xi, xl). By introducing slack variables ξi > 0,
i = 1, . . . , n, we can reformulate the optimization problem (6)
as the following equivalent form:

min
β0,θ1,...,θn,ξ1,...,ξn

⎡⎣(1 − πm)
∑
yi=j

ξi + πm
∑
yi=j′

ξi

⎤⎦
+ λ

n∑
i=1

n∑
l=1

θiθlK(xi, xl) (8)

subject to ξi ≥ 0, i = 1, . . . , n;

ξi ≥ 1 − Rj,j′(yi)

( n∑
l=1

θlK(xl, xi) + β0

)
,

i ∈ {m : ym = j or j′}.
The optimization problem (8) is a standard quadratic pro-

gramming (QP) problem, which can be solved by standard
packages in R and MATLAB. For any fixed πm ∈ �M , denote
the solution to (8) as f̂ λj,j′,πm

(x) = β̂0 + ∑n
i=1 θ̂iK(xi, x). After

collecting all f̂ λj,j′,πm
(x),πm ∈ �M , we can compute q̂λ

j|(j,j′)(x) =
[argminπm∈�M {f̂j,j′,πm(x) < 0} + argmaxπm∈�M {f̂j,j′,πm(x) >

0}]/2. The estimated pairwise conditional probability q̂λ
j|(j,j′)(x)

depends on the regularization parameter λ, which should be
selected adaptively using the data. We discuss the tuning issue
in next section.

3.2. Parameter Tuning

The regularization parameter λ in (8) needs to be tuned adap-
tively with the data. For a fixed λ, we get an estimated pair-
wise conditional probability q̂λ

j|(j,j′)(·), whose closeness to the
true probability qj|j,j′(·) can be measured by the generalized
Kullback–Leibler (GKL) distance

GKL(qj|(j,j′), q̂λ
j|j,j′)) (9)

= E

[
qj|(j,j′)(X) log

qj|(j,j′)(X)

q̂λ
j|(j,j′)(X)

+(1 − qj|(j,j′)(X)) log
1 − qj|(j,j′)(X)

1 − q̂λ
j|(j,j′)(X)

]
= C − E

[
qj|(j,j′)(X) log q̂λ

j|(j,j′)(X)

+(1 − qj|(j,j′)(X)) log(1 − q̂λ
j|(j,j′)(X))

]
,

where the constant C = E[qj|(j,j′)(X) log qj|(j,j′)(X) + (1 −
qj|(j,j′)(X)) log(1 − qj|(j,j′)(X))], which does not depend on
q̂λ
j|(j,j′)(·), and the expectation is taken with respect to X.
In practice, the quantity GKL is not computable because it

involves the true qj|(j,j′)’s, which are generally unknown. There-
fore, we need to derive a computable proxy of GKL using the
data. Note that E

[
(Rj,j′(Y) + 1)/2|X,Y ∈ {j, j′}] = qj|(j,j′)(X).

After removing C from (9), we obtain an empirical version of
GKL distance (up to a constant)

EGKL(q̂λ
j|(j,j′)) (10)

= − 1
2nj,j′

∑
i:yi=j or j′

[
(1 + Rj,j′(yi)) log q̂λ

j|(j,j′)(xi)

+(1 − Rj,j′(yi)) log(1 − q̂λ
j|(j,j′)(xi))

]
,

where nj,j′ denotes the number of observations with yi = j or j′.
Since EGKL approximates GKL up to a constant C, it provides a
proper measure to evaluate q̂λ

j|(j,j′)(x). The same type of measure
was used in Wang, Shen, and Liu (2008). In the simulated
examples, we generate a tuning set of size n and compute EGKL
based on the tuning set, and the optimal λ is chosen as the
minimizer of EGKL. In the real data examples, we split the data
into the training set and the tuning set, and then the tuning set
is used to compute EGKL and select the optimal λ.

3.3. Merging Pairwise Conditional Probabilities

Lemma 1 shows that different choices of j′ would yield the same
solution for the new estimator. Therefore, froma theoretical per-
spective, the proposed estimator does not depend on the choice
of the baseline class j′. In practice, there might be slight dif-
ferences among the solutions obtained using different j′ due to
the numerical variation. For the sake of computational stability,
we suggest using j′ which gives the largest pairwise conditional
probability estimate q̂j′|(j,j′)(x). As implied by Equation (7), the
quality of the estimates relies heavily on the ratio q̂j|(j,j′)/q̂j′|(j,j′),
so we choose j′ to prevent the denominator from being too close
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to zero. In particular, this choice of j′ can be achieved as follows.
For each x, we compare q̂j|(j,j′)(x) and q̂j′|(j,j′)(x) to see which
gives a bigger value for each pair of classes (j, j′), j 	= j′. In
practice, we suggest to first fit the binary classifiers all possible
pairs, and then identify the class l̂(x) which produces larger
pairwise conditional probability values most frequently. The
final probability estimator is then defined as p̂j(x) = p̂j|(j,̂l(x))(x).

4. Numerical Studies

We illustrate empirical performance of the new estimator under
five scenarios and compare it with existing methods, including
cumulative logitmodel (CLM), baseline logitmodel (BLM), ker-
nel multi-category logistic regression (KMLR, Zhu and Hastie
2005), classification tree (TREE, Breiman et al. 1984), the mul-
ticlass WSVM method (Wu, Zhang, and Liu 2010) denoted as
WZL (2010), random forest (RF), and a recent proposal (Tu
andWang 2013) denoted as XW (2013). The CLM assumes that

log
∑j

l=1 pl(x)
1−∑j

l=1 pl(x)
= βj0 + xTβ j, j = 1, 2, . . . , k − 1. The BLM

method uses one class (say class k) as the baseline class and
assumes log pj(x)

pk(x) = βj0 + xTβ j, j = 1, 2, . . . , k − 1. TREE and
RF methods are implemented using R packages and tuned with
a built-in cross-validation procedure.

To train the binary weighted SVM, we set the weights as
πm = m/20,m = 1, . . . , 19. For kernel WSVMs, we use
Gaussian kernel R(x1, x2) = e−‖x1−x2‖22/σ 2 , where ‖ · ‖2
denotes the l2-norm. Following Wu, Zhang, and Liu (2010), we
select the parameter σ from the set {1, 2, 3, 4, 5, 6}σM/4, where
σM = Median{‖ xi − xj ‖2: yi 	= yj} is the median pairwise
Euclidean distance between different classes. The parameter λ

is selected from the set log10(λ) ∈ {−8,−7, . . . , 7, 8} based on
GKL. To evaluate the performance of EGKL, we also generate a
tuning set of size n to implement EGKL. For real data analysis,
it is not feasible to compute the tuning criterion GKL without
knowing true class probabilities, but EGKL is its computable
approximation. To demonstrate the performance of EGKL as an
approxy of GKL, we report the results of both tuning criteria in
all the simulation examples.

To evaluate the performance in probability estimation, we
generate a test of size ñ = 10n, {(x̃i, ỹi), i = 1, 2, . . . , ñ}
and compute the following three measures for any probability
estimate p̂j(x), j = 1, . . . , k,

• 1-norm error 1
ñ

∑ñ
i=1

∑k
j=1 |p̂j(x̃i) − pj(x̃i)|

• 2-norm error 1
ñ

∑ñ
i=1

∑k
j=1(p̂j(x̃i) − pj(x̃i))2

• EGKL loss 1
ñ

∑ñ
i=1

∑k
j=1 pj(x̃i) log

pj(x̃i)
p̂j(x̃i)

.

For each example, we run 100 Monte Carlo simulations and
report the average performance measures along with their
SEs.

We conduct five simulated studies. In particular, Examples 1
and 2 are two three-class (k = 3) cases, Example 3 is a four-
class (k = 4) case, and Example 4 is a five-class (k = 5) case.
Different from Examples 1–4, where the BLM method is the
oracle procedure, Example 5 considers the scenario where the
BLM method is not the oracle. Figure 1 contains scatterplots of

the training set for Examples 1–4, and as well as the underlying
true (Bayes) classification boundary for each example. Since the
method WZL (2010) is computationally infeasible for k ≥ 4, it
is implemented only for k = 3.

Example 1 (Three-class, linear case). The data are generated as
follows: (i) Generate Yi uniformly from {1, 2, 3}; (ii) Given Yi =
yi, the inputXi = xi follows a bivariate normalN(μ(yi),�)with
μ(yi) = (cos(2yiπ/3), sin(2yiπ/3))T and � = 0.72I2, where I2
is a 2 × 2 identity matrix. The sample size n = 400.

Table 1 summarizes the estimation performance of all the
methods. The BLM serves as the oracle since it specifies the
underlyingmodel correctly. Overall speaking, the new estimator
consistently works best among all and shows substantial gain
in estimation accuracy over other methods. The tuning criteria
GKL andEGKLgive similar performance, suggesting that EGKL
is a good computable proxy ofGKL in real data analysis.We note
that, the TREE method may give zero probability estimates for
some x in some classes, yielding infinity (“Inf ” in Table 1) for
EGKL. Correspondingly, the SEs are not available and therefore
denoted as NaN (standing for “Not A Number”). In term of the
computing time, it takes on average 8 sec and 568 sec for the
new method and WZL(2010), respectively, to get the solutions
in Example 1; it takes on average 7 sec and 6360 sec for the
new method and WZL(2010), respectively, to get the solutions
in Example 2. We observe a significant gain in computation
efficiency of the new method compared to WZL(2010), which
is consistent to theoretical complexity analysis.

Example 2 (Three-class, nonlinear case). For any x = (x1, x2)T ,
define

f1(x) = −x1 + 0.1x21 − 0.05x22 + 0.1
f2(x) = −0.2x21 + 0.1x22 − 0.2
f3(x) = x1 + 0.1x21 − 0.05x22 + 0.1,

and pj(x) = efj(x)/(
∑3

l=1 efl(x)) for j = 1, 2, 3. The data are gen-
erated as follows: (i) generate independent X1 and X2 uniformly
from [−3, 3] and [−6, 6], respectively; (ii) givenX = x, the label
Y takes the value j with probability pj(x) for j = 1, 2, 3. The
training data size n = 1000. The BLM can be regarded as the
oracle.

For the proposed methods, there are three different ways
to achieve nonlinear classification. The first way is through
basis expansion, by expanding the input x = (x1, x2)T into
a five-dimensional vector x̃ = (x21, x22, x1x2, x1, x2)T , and then
solves (3) with linear SVMs using x̃ as the input vector. The
second way is to use kernel SVMs with the Gaussian kernel
K(x1, x2) = e−||x1−x2||22/σ 2 with σ 2 = 2σ 2

M , where σ 2
M is

the median of the Euclidean distances from positive examples
to negative examples. The third way is to use kernel SVMs
associated with Spline kernel given by (Gu 2002). Table 1 (the
second panel) summarizes the numerical results for the new
methods implemented with basis expansion. In term of all three
performance measures, the proposed estimators consistently
outperform other competing methods.
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Figure 1. This figure contain the scatterplots of the training datasets for Examples 1–4, along with the true class boundaries (Bayes rules). In each plot, different colors (or
symbols) denote training data points from different classes.

Table 1. Probability estimation results for Examples 1 and 2.

Example 1

New-GKL New-EGKL WZL(2010) XW(2013) KMLR TREE Oracle

1-norm 10.1 (1.6) 10.7 (1.5) 11.0 (2.3) 32.4 (1.9) 53.6 (2.6) 27.5 (3.3) 6.2 (1.9)
2-norm 0.6 (0.2) 0.6 (0.2) 0.9 (0.3) 6.4 (1.2) 12.4 (1.1) 6.0 (1.2) 0.4 (0.2)
EGKL 2.1 (0.5) 2.2 (2.2) 2.6 (0.8) 12.5 (1.0) 24.8 (1.7) Inf (NaN) 0.8 (0.5)

Example 2

New-GKL Mew-EGKL WZL(2010) XW(2013) KMLR TREE Oracle

1-norm 24.5 (4.7) 24.1 (6.2) 36.4 (4.4) 31.1 (1.1) 59.3 (4.8) 60.1 (10.6) 19.4 (5.2)
2-norm 4.1 (1.6) 5.0 (2.6) 7.9 (2.1) 5.3 (3.6) 16.4 (2.3) 22.2 (4.8) 3.2 (1.9)
EGKL 9.1 (2.9) 10.9 (10.6) 13.6 (2.9) 8.8 (0.5) 28.9 (3.2) Inf (NaN) 9.1 (9.2)

NOTE: The table compares the new method with four other methods: WZL(2010), XW(2013), kernel logistic regression (KMLR), and TREE method, in terms of three
performance measures: 1-norm error, 2-norm error, and EGKL. The new method is tuned with GKL and EGKL, respectively. The oracle method is implemented by the
BLM. The numbers in parentheses are SEs. The table suggests the proposed methods overall outperform other methods under comparison in these two examples and
are the closest to the oracle method.
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Table 2. Average probability estimation results for Examples 3 and 4.

Example 3 (three-class example)

New-GKL New-EGKL XW(2013) RF KMLR TREE Oracle

1-norm 25.8 (1.6) 25.8 (1.6) 36.3 (2.5) 29.8 (1.8) 132.0 (8.2) 43.9 (5.4) 11.4 (2.1)
2-norm 5.3 (0.8) 5.3 (0.8) 7.4 (0.9) 8.6 (1.0) 86.1 (12.4) 18.3 (2.4) 1.7 (0.6)
EGKL 12.8 (1.4) 12.8 (1.3) 14.1 (1.5) Inf (NaN) 247.8 (91.0) Inf (NaN) 4.6 (2.1)

Example 4 (five-class example)

New-GKL New-EGKL XW(2013) RF KMLR TREE Oracle

1-norm 15.3 (1.6) 16.0 (2.1) 39.1 (1.7) 41.5 (1.8) 105.6 (1.5) 40.1 (3.2) 7.3 (1.7)
2-norm 1.0 (0.2) 1.1 (0.3) 5.8 (1.2) 9.0 (0.8) 32.9 (0.9) 7.8 (1.2) 0.3 (0.1)
EGKL 3.6 (0.4) 4.0 (0.4) 15.0 (0.9) Inf (NaN) 76.4 (2.2) Inf (NaN) 0.6 (0.3)

NOTE: The table compares theproposedmethodwith threeothermethods: XW(2013), kernel logistic regression (KMLR), RF, andTREEmethod, in termsof threeperformance
measures: 1-norm error, 2-norm error, and EGKL. The newmethod is tunedwith GKL and EGKL, respectively. The oraclemethod is implemented by the BLM. The numbers
in parentheses are SEs. The table suggests the proposedmethods overall outperform other methods under comparison in these two examples and are the closest to the
oracle method.

Table 3. Average probability estimation results for Example 5.

Example 5

New-GKL New-EGKL WZL (2010) KMLR TREE BLM

1-norm 18.3 (2.6) 19.8 (3.6) 21.8 (2.2) 63.1 (1.9) 24.4 (3.3) 31.0 (1.1)
2-norm 0.3 (0.0) 0.3 (0.0) 4.5 (1.0) 16.7 (0.9) 7.7 (1.4) 6.9 (0.3)
EGKL 7.0 (1.4) 7.8 (7.7) 11.8 (2.6) 31.8 (1.4) Inf (NaN) 12.7 (0.4)

NOTE: The table compares the proposed method with four existing methods: WZL(2010), kernel logistic regression (KMLR), TREE, and BLM methods, in terms of three
measures: 1-norm error, 2-norm error, and EGKL. The newmethod is tunedwith GKL and EGKL, respectively. The numbers in parentheses are SEs. The results suggest that
the proposed methods consistently give the best prediction performance among all the methods, including the BLM.

Example 3 (Four-class, nonlinear case). For x = (x1, x2)T ,
define

f1(x) = −|x21 + x22|, f2(x) = −|x21 + x22 − 1.52|,
f3(x) = −|x21 + x22 − 2.52|, f4(x) = −|x21 + x22 − 3.52|,

and let pj(x) = exp fj(x)/[∑4
l=1 exp(fl(x))] for j = 1, 2, 3, 4. We

generate the data as follows: (i) generate the two dimensional
predictor X uniformly for the disc {x : x21 + x22 ≤ 16}; (ii) given
X = x, the label Y takes the value jwith probability pj(x) for j =
1, 2, 3, 4. In this setting, the BLM model assumption holds, so
the BLM procedure can be regarded as the oracle. The training
sample size n = 400. Table 1 (the top panel) summarizes the
performance of all the methods under comparison, evaluated
on a test set of size ñ = 10n.

For the proposed method, there are three different ways
to achieve nonlinear classification. The first way is through
basis expansion, by expanding the input x = (x1, x2)T into
a five-dimensional vector x̃ = (x21, x22, x1x2, x1, x2)T and then
implementing the linear SVM with x̃ as the input vector. The
second way is to use kernel SVMs with the Gaussian kernel
K(x1, x2) = e−||x1−x2||22/σ 2 with σ 2 = 2σ 2

M , where σ 2
M is the

median of the Euclidean distances from positive examples to
negative examples. The third way is to use kernel SVMs asso-
ciated with the spline kernel given by Gu (2013). We report the
results using the basis expansion technique, since those based
on Gaussian kernel and the spline kernel are quite similar.

Similar to the previous examples, we observe that the new
estimator consistently works best among all and shows substan-
tial gain in estimation accuracy over other methods. The tuning
criteria GKL and EGKL give similar performance, suggesting
that EGKL is a good computable proxy ofGKL.Wenote that, the

TREEmethodmay give zero probability estimates for some x in
some classes, yielding infinity (“Inf ” in Table 1) for EGKL. Cor-
respondingly, the SEs are not available and therefore denoted as
NaN (standing for “Not A Number”).

Example 4 (Five-class, linear case). This is a five-class linear
example designed to illustrate the newmethod’s ability to handle
an even larger number of classes. The data are generated as
follows: (i) generate the label Y uniformly from {1, 2, 3, 4, 5}; (ii)
Given Y = y, generate X from the bivariate normal distribution
N(μ(y),	), whereμ(y) = (cos(2yπ/5), sin(2yπ/5))T ,	 = I2,
and I2 is a 2 × 2 identity matrix. The training sample size n =
500. Table 2 (the bottom panel) shows that the proposed prob-
ability estimator gives the best estimation performance among
all the methods under comparison. With regard to tuning, GKL
and its computable proxy EGKL give very similar performance.

Example 5 (Three-class, BLM is not the oracle). In the above
examples, the BLMmethod is the oracle and hence gives the best
performance. In this example, we consider a scenario where the
BLM model assumption does not hold any more. Assume X is
uniformly sampled from a disc {x : x21 + x22 ≤ 100}. Define
h1(x) = −5x1

√
3 + 5x2, h2(x) = −5x1

√
3 − 5x2 and h3(x) =

0. Then consider the transformation fj(x) = 
−1(T2(hj(x)))
for j = 1, 2, 3, where 
(·) is the cdf of the standard normal
distribution and T2(·) is the cdf of t2 distribution. Then we set
the probability functions as pj(x) = exp fj(x)/(

∑3
l=1 exp(fl(x)))

for j = 1, 2, 3, and let n = 400. Table 3 shows that the
proposed methods consistently give the best prediction perfor-
mance among all the methods under comparison, including the
BLM. The tuning criteria GKL and its computable proxy EGKL
give very similar performance.
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Table 4. Average misclassification error rates on benchmark data examples.

Data information Methods

Dataset Class # n ñ New XW(2013) RF TREE BLM

Zip(3,6,9) k=3 1966 513 1.2 (0.3) 3.2 (0.1) 1.4 (0.2) 8.2 (1.2) 3.3 (2.6)
Zip(full) k=10 7291 2007 7.1 (0.7) - (-) 5.9 (0.4) 27.8 (1.2) 58.6 (2.8)
Ecoli k=4 222 110 14.7 (2.3) 23.5 (4.0) 14.4 (2.9) 18.9 (4.7) 29.8 (2.2)
Yeast k=5 989 495 37.3 (0.8) 47.6 (2.4) 36.1 (1.7) 41.2 (2.3) 39.0 (2.1)

NOTE: The table contains the data information and the analysis results for the four benchmark datasets. The first column contains four dataset names. The next three
columns contain the dataset information: k is the number of classes, n is the training set size, and ñ is the test set size. The remaining columns compares the newmethod
with XW(2013), RF, tree, and BLM, on four datasets. The results suggest that the proposed method and RF are among the top two classifiers and their performance is
overall similar in these four studies.

5. Benchmark Data Analysis

In this section, we illustrate performance of the new estimator
on real-world data. Four real datasets are considered, represent-
ing two scenarios: d < n and high dimensional case d > n.

5.1. Low-Dimensional Cases (d < n)

We apply the new methods to three benchmark datasets: zip
code, ecoli data, and Yeast data. The data information is sum-
marized in Table 4.

The zip code data consist of 7291 hand-written zip code
digits automatically scanned from envelopes by the U.S. Postal
Service. As the original scanned digits have different sizes and
orientations, we desalinate and normalize the images, resulting
in 16 × 16 gray-scale images (Le Cun et al. 1990). The test set
size is 2007. Since the dataset is quite large and has 10 classes,
we start with a small classification problem by distinguishing
three classes (digits 3, 6, and 9). Then we use the whole dataset
to evaluate the methods on the 10-class problem.

For the E. coli dataset, the goal is to predict the cellular
localization sites of E. coli proteins (Horton and Nakai 1996).
The original data consist of eight different cellular sites. Since
some classes have fewer observations than others, we merge
some classes and form a four-class problem.

The goal of the Yeast dataset analysis is to determine the
cellular localization of the yeast proteins (Horton and Nakai
1996). There are 10 different sites, which include: CYT (cytoso-
lic or cytoskeletal); NUC (nuclear); MIT (mitochondrial); ME3
(membrane protein, no N-terminal signal); ME2 (membrane
protein, uncleaved signal); ME1 (membrane protein, cleaved
signal); EXC (extracellular); VAC (vacuolar); POX (peroxiso-
mal); and ERL (endoplasmic reticulum lumen). After combin-
ing some small classes, we end up with a five-class classification
problem.

For zip code datasets, we split the training data into two
halves (one half for training, and the other for tuning) 10 times,
and report the average error on the test set. For the E. coli and
Yeast datasets, we randomly split the entire data equally as the
training, tuning, and testing sets for 10 times, and report the
average test error ( with SEs in parentheses). Table 4 suggests
that the new method and RF are overall among the top two
classifiers and they perform quite similarly in these studies.

5.2. High-Dimensional Case: d > n

One advantage of the new method is its ability to fit nonlinear
classifiers for high dimensional data with d > n, thanks to the

kernel trick. We apply the new method to the children cancer
dataset of Khan et al. (2001). The goal is to classify SRBCTs
of childhood, based on cDNA gene expression profiles, into
four classes: NB, RMS, non-Hodgkin lymphoma (NHL), and the
Ewing family of tumors (EWS). The 2308 gene profiles are pro-
vided at http://research.nhgri.nih.gov/microarray/Supplement/,
and the training size is 63 (containing 23 EWS, 8 BL, 12 NB,
20 RMS) and the test set size is 20 (containing 6 EWS, 3 BL, 6
NB, 5 RMS).

We first standardize the data by linear transformations.
Specifically, we using the following formula to standardize the
gene expression value x̃gi for the gth gene of subject i:

xgi = x̃gi − 1
n

∑n
l=1 x̃gl

sd(x̃g1, . . . , x̃gj)
.

After standardization, all genes are ranked by their marginal
relevance to the class label, using the criterion suggested by
(Dudoit et al. 2002). Specifically, the relevance measure of gene
g is calculated as the ratio of between-class sum of squares to
within-class sum of squares as follows:

R(g) =
∑n

i=1
∑k

j=1 I(yi = j)(x̄(j)
g· − x̄g·)2∑n

i=1
∑k

j=1 I(yi = j)(xgi − x̄(j)
g· )2

,

where n is the training size, x̄(j)
g· is the average expression of

gene g for observations in class j, and x̄g· is the overall mean
expression level of gene g in the training set. We select top 100
and bottom 100 genes as the covariates based on the relevance
measure R. Figure 2 plots the estimated class probabilities of
NB (green), RMS (blue), BL (red), and EWS (purple), given by
the proposed method on 20 testing points. The method makes
only one mistake, by misclassifying one NB sample to RMS.
It has been found in the literature that, gene expressions carry
sufficient information to differentiate cancer subtypes very well.
It explains why most methods can achieve high accuracy (Zhu
et al. 2004; Zhang et al. 2008).

6. Concluding Remarks

We propose a simple yet effective approach to estimating multi-
class probabilities using SVMs. The main advantages of the new
method are its flexibility, high prediction accuracy, and com-
putational efficiency for large k. Its divide-and-conquer feature
makes the algorithm enjoy parallel computing.We also establish
the consistency of the new probability estimator. Our choice
assures the consistency of p̂j’s, provided qj|(j,j′)’s being estimated

http://research.nhgri.nih.gov/microarray/Supplement/
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Figure 2. This figure plots the estimated probabilities (shown as the bar heights) for the SRBCT test set. From the top to the bottom, the four panels present the estimated
class probabilities of one subclass test samples: EWS, BL, NB, and RMS, respectively. Four colors (purple, red, green, blue), respectively, represent the estimated probabilities
of belonging to class EWS, BL, NB, RMS, by the proposed method.

consistently. Furthermore, one-vs-one subproblems generally
involves small sample sizes and demand low computational cost.
When the number of subproblems

(k
2
)
is large, we suggest using

parallel computing.
One interesting yet challenging topic for future research is

how to conduct variable selection under the proposed esti-

mation framework. Though it is straightforward to implement
variable selection for each pairwise classification problem, it is
unclear how to combine the selected variable sets as different
pairwise classificationmay select different important predictors.
It would be very useful to come up with an optimal way of
aggregating the selected variables.
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Supplementary Materials

Code: Contains the MATLAB source code (to implement the proposed
method, and generate data for simulated examples).

Funding

This research was supported in part by National Science Foundation grants
CCF-1740858 and DMS-1055210 and NSFC 11571009.

References

Agresti, A., and Coull, B. A. (1998), “Approximate Is Better Than ‘Exact’ for
Interval Estimation of Binomial Proportions,”The American Statistician,
52, 119–126. [586]

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984), Clas-
sification and Regression Trees, Belmont, CA: Wadsworth Publishing
Company. [586,590]

Burges, C. (1998), “A Tutorial on Support Vector Machines for Pattern
Recognition,” Data Mining and Knowledge Discovery, 2, 121–167. [586]

Cortes, C., and Vapnik, V. (1995), “Support-Vector Networks,” Machine
Learning, 20, 273–297. [586]

Cristianini, N., and Shawe-Taylor, J. (2000), An Introduction to Support
Vector Machines and Other Kernel-Based Learning Methods, Cambridge,
UK: Cambridge University Press. [586]

Dudoit, S., Fridlyand, J. and Speed, T. P. (2002), “Comparison of Discrimi-
nationMethods for the Classification of Tumors Using Gene Expression
Data,” Journal of the American Statistical Association, 97, 77–87. [593]

Gu, C. (2002), Smoothing spline ANOVA models, New York: Springer-
Verlag. [590]

(2013), Smoothing Spline ANOVA Models, New York: Springer.
[592]

Hastie, T., and Tibshirani, R. (1998), “Classification by Pairwise Coupling,”
in Advances in Neural Information Processing Systems (Vol. 10), eds.
M. I. Jordan, M. J. Kearns, and A. S. Solla, Cambridge, MA: MIT
Press. [587]

Horton, P., and Nakai, K. (1996), “A Probabilistic Classification System for
Predicting the Cellular Localization Site of Protein,” in Proceedings of
the International Conference on Intelligent Systems for Molecular Biology
(Vol. 4), pp. 109–115. [593]

Huang, H., Liu, Y., Du, Y., Perou, C., Hayes, N., Todd, M., and Marron, S.
(2013), “Multiclass Distance Weighted Discrimination,” J. Mach. Learn.
Res., 22, 953–969. [586]

Khan, J., Wei, J. S., Ringner, M., Saal, L. H., Ladanyi, M., Westermann, F.,
Berthold, F., Schwab, M., Antonescu, C. R., Peterson, C., and Meltzer,
P. S. (2001), “Classification and Diagnostic Prediction of Cancers Using
Gene Expression Profiling and Artificial Neural Networks,” Nature
Medicine, 7, 673–679. [586,593]

Kimeldorf, G., and Wahba, G. (1971), “Some Results on Tchebycheffian
Spline Functions,” Journal ofMathematical Analysis and Applications, 33,
82–95. [587,589]

Le Cun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard,
W., and Jackel, L. D. (1990), “Back-Propagation Applied to Handwritten
Zipcode Recognition,” Neural Computation, 1, 541–551. [593]

Lee, Y., Lin, Y., and Wahba, G. (2004), “Multicategory Support Vector
Machines, Theory, and Application to the Classification of Microarray
Data and Satellite Radiance Data,” Journal of the American Statistical
Association, 99, 67–81. [586]

Lin, Y. (2002), “Support Vector Machines and the Bayes Rule in Classifica-
tion,” Data Mining and Knowledge Discovery, 6, 259–275. [586,587]

Liu, Y. (2007), “Fisher Consistency of Multicategory Support Vector
Machines,” in Eleventh International Conference on Artificial Intelligence
and Statistics, pp. 289–296. [586]

Liu, Y., and Shen, X. (2006), “Multicategory Psi-Learning,” Journal of the
American Statistical Association, 101, 500–509. [586]

Liu, Y., and Yuan, M. (2011), “Reinforced Multicategory Support Vector
Machine,” Journal of Computational and Graphical Statistics, 20, 901–
919. [586]

Platt, J. (1999), “Probabilistic Outputs for Support Vector Machines and
Comparisons to Regularized LikelihoodMethods,” in Advances in Large
Margin Classifiers, Cambridge, MA: MIT Press. [587]

Qiao, X., and Liu, Y. (2009), “Adaptive Weighted Learning for Unbalanced
Multicategory Classification,” Biometrics, 65, 159–168. [586]

Tu, X., and Wang, J. (2013), “An Efficient Model-Free Estimation for
Multiclass Conditional Probability,” Journal of Statistical Planning and
Inference, 143, 2079–2088. [587,590]

Van Calster, B., Luts, J., Suykens, J., Condous, G., Bourne, T., Timmerman,
D., and Van Huffel, S. (2007), “Comparing Methods for Multi-class
Probabilities in Medical Decision Making Using LS-SVMs and Kernel
Logistic Regression,” in Artificial Neural Networks, Berlin, Heidelberg:
Springer, pp. 139–148. [587]

Vapnik, V. (1998), Statistical Learning Theory, New York: Wiley. [586]
Wahba, G. (1990), “Spline Models for Observational Data,” in CBMS-NSF

Regional Conference Series, Philadelphia, PA: Society for Industrial and
Applied Mathematics (SIAM). [587,589]

Wang, J. (2013), “Boosting the Generalized Margin in Cost-Sensitive Mul-
ticlass Classification,” Journal of Computational and Graphical Statistics,
22, 178–192. [586]

Wang, L., and Shen, X. (2007), “On L1-Norm Multiclass Support Vector
Machines,” Journal of the American Statistical Association, 102, 583–594.
[586]

Wang, J., Shen, X., and Liu, Y. (2008), “Probability Estimation for Large
Margin Classifiers,” Biometrika, 95, 149–167. [587,588,589]

Weston, J., and Watkins, C. (1999), “Support Vector Machines for Multi-
class Pattern Recognition,” in Proceedings of 7th European Symposium
on Artificial Neural Networks, pp. 219–224. [586]

Wu, T.-F., Lin, C.-J., and Weng, R. C. (2004), “Probability Estimates for
Multi-class Classification by Pairwise Coupling,” Journal of Machine
Learning Research, 5, 975–1005. [587]

Wu, Y., Zhang, H. H., and Liu, Y. (2010), “Robust Model-Free Multiclass
Probability Estimation,” Journal of the American Statistical Association,
105, 424–436. [587,588,590]

Zhang, C., and Liu, Y. (2013), “Multicategory Large-Margin Unified
Machines,” Journal of Machine Learning Research, 14, 1349–1386.
[586]

Zhang, H. H., Liu, Y., Wu, Y., and Zhu, J. (2008), “Variable Selection
for the Multicategory SVM via Adaptive Sup-Norm Regularization,”
Electronical Journal of Statistics, 2, 149–167. [593]

Zhang, T. (2004), “Statistical Analysis of SomeMulti-category LargeMargin
Classification Methods,” Journal of Machine Learning Research, 5, 1225–
1251. [586]

Zhu, J., and Hastie, T. (2005), “Kernel Logistic Regression and the Import
Vector Machine,” Journal of Computational and Graphical Statistics, 14,
185–205. [586,590]

Zhu, J., Rosset, S., Hastie, T., and Tibshirani, R. (2004), “1-Norm Support
Vector Machines,” in The Annual Conference on Neural Information
Processing Systems (Vol. 16). [586,593]

Zhu, J., Zou, H., Rosset, S., and Hastie, T. (2009), “Multi-class Adaboost,”
Statistics and Its Interface, 2, 349–360. [586]

Zou, H., Zhu, J., and Hastie, T. (2008), “New Multi-category Boosting
Algorithms Based on Multi-category Fisher-Consistent Losses,” Annals
of Applied Statistics, 2, 1290–1306. [586]


	Abstract
	1.  Introduction
	2.  Main Methodology
	2.1.  Weighted SVMs for Binary Classification
	2.2.  New Method for Multiclass Probability Estimation

	3.  Computation and Implementation
	3.1.  Kernel Learning Optimization
	3.2.  Parameter Tuning
	3.3.  Merging Pairwise Conditional Probabilities

	4.  Numerical Studies
	5.  Benchmark Data Analysis
	5.1.  Low-Dimensional Cases (d<n)
	5.2.  High-Dimensional Case: d > n

	6.  Concluding Remarks
	Supplementary Materials
	Funding
	References


